
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1002/cem.2562

http://hdl.handle.net/10251/60810

Wiley

González Martínez, JM.; Camacho Paez, J.; Ferrer, A. (2014). Bilinear modeling of batch
processes. Part III: Parameter Stability. Journal of Chemometrics. 28(1):10-27.
doi:10.1002/cem.2562.



Bilinear Modeling of Batch Processes. Part III: Parameter Stability1
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Abstract6

A paramount aspect in the development of a model for a monitoring system is the so-called parameter7

stability. This is inversely related to the uncertainty, i.e. the variance in the parameters estimates. Noise8

affects the performance of the monitoring system, reducing its fault detection capability. Low parameters9

uncertainty is desired to ensure a reduced amount of noise in the model. Nonetheless, there is no sound10

study on the parameter stability in Batch Multivariate Statistical Process Control (BMSPC). The aim11

of this paper is to investigate the parameter stability associated to the most used synchronization and12

PCA-based BMSPC methods. The synchronization methods included in this study are: Indicator Variable,13

Dynamic Time Warping, Relaxed Greedy Time Warping and Time Linear Expanding/Compressing-based14

methods. In addition, different arrangements of the 3-way batch data into 2-way matrices are considered,15

namely: single-model approaches, K-models approaches and hierarchical approaches. Results are discussed16

in connection with previous conclusions in the first two papers of the series.17

Keywords: Stability, uncertainty, multivariate statistical process control, unfolding, principal component18

analysis, synchronization.19

1. Introduction20

Batch processing plays an important role in the production of high value-added products, such as in21

the pharmaceutical, food, semiconductor, and biochemical industries, among others. The final goal of a22

monitoring scheme in a batch process is safe and stable operation, to maintain the release of high quality23

product and to minimize the waste of product in off-spec batches. For this purpose, these schemes must be24

designed in such a way that faults, failures and disturbances can be accurately and early detected, allowing25

the subsequent diagnosis of their potential causes. Once these causes have been diagnosed, actions in the26

process can be taken, restoring the faulty operation to a normal operating condition (NOC).27

For the design of monitoring schemes, the measurements of J process variables collected at K different28

sampling points over I batches run under NOC are used. Setting a BMSPC system becomes a challenging29

task due the nature of batch data [1, 2]: high volume of data (high dimensionality); unequalized batch30

trajectories; uneven and unsynchronized batch trajectories; non-linear and time-varying dynamics; presence31

of noise, collinearity and outliers, variables of different magnitude and variance, and missing data. In this32

context, Latent Structures-based methods, like Principal Component Analysis (PCA) and Partial Least33

Squares (PLS), combined with the adequate preprocessing methods are frequently used for the generation34

of empirical models [2, 3]. Using this type of methods, process understanding can be gained and process35

operating problems can be troubleshooted in a timely manner. From this off-line investigation based on36

historical data, a monitoring system can be designed (the so-called model building phase), allowing real-37

time fault detection and diagnosis on the basis of incoming batch data (the so-called exploitation model38

phase) [4].39

∗Corresponding author
Email address: jogonmar@gmail.es (J.M. González-Mart́ınez)
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A principal concern when designing BMSPC systems based on PCA should be the stability of the model40

parameters -i.e. the preprocessing parameters (means and standard deviations) and the loadings. The41

parameter stability is inversely related to the uncertainty, i.e. the variance in the parameters estimates.42

The assessment of the parameter stability is relevant for almost any purpose PCA is applied for. If PCA43

is used to develop a monitoring scheme, low parameters uncertainty is desired to assure a reduced amount44

of noise in the model. Noise affects the performance of the monitoring system, reducing the fault detection45

capability. From the statistical point of view, it is well known that the higher the number of observations in46

the calibration the better the parameters estimation and so the lower the parameters uncertainty. There is47

a second element which affects the uncertainty in the parameters of PCA: the more different the eigenvalues48

in the model, the more stable the loadings [5].49

The application of bilinear models like PCA to batch data requires the rearranging of the 3-way data50

matrix in a number of 2-way matrices. This transformation can be performed following a number of different51

approaches. This is the third paper of a series devoted to study and compare several of these approaches52

from different perspectives: process dynamics modeling, on-line prediction and parameter stability. In the53

first paper [6], a theoretical discussion on the capability to capture the process dynamics based on the54

structure of the covariance matrices was presented. In the second paper of the series [7], PLS modeling55

approaches were compared in the on-line estimation (soft sensor) of a key variable in a batch process. The56

main motivation of this paper is to complement the companion papers. For that, a comparison of the most57

used modeling approaches and synchronization methods in terms of parameter stability is performed.58

This paper is organized as follows. The state of the art concerning the development of BMSPC systems59

based on PCA is introduced in Section 2. Section 3 presents the materials and methods of the research60

work. Section 4 illustrates the effect of the batch synchronization on the parameter stability. Section 5 is61

devoted to present and discuss the results of the comparison of the different rearranging methods under62

study. Finally, conclusions are drawn in Section 6.63

2. State of the art64

In model building for process monitoring, a number of steps are typically performed, namely: i) data65

alignment, ii) data preprocessing and iii) transformation of the 3-way data matrix to one or several 2-way66

data matrices for the subsequent iv) bilinear batch modeling (see Figure 1). These steps are iteratively67

repeated whereas outliers are detected and isolated from the calibration data set.68

The data alignment step includes equalization of variables and batch synchronization. The aim of69

this stage is to obtain a 3-way data structure from the data collected through the net of process sensors70

with multiple sampling rates and for batches of possibly different duration and/or processing pace. Batch71

synchronization is one of the most important steps prior to batch modeling and process monitoring. The72

accuracy of both empirical models and the subsequent monitoring schemes in terms of fault detection73

and fault diagnosis is highly dependent on the synchronization quality [8]. A number of proposals for74

dealing with the most complex synchronization problems can be found in the literature. The approaches75

for synchronizing batch data can be roughly classified into three categories. The first category are the76

methods based on compressing/expanding the raw trajectories using linear interpolation. This interpolation77

can be performed in the time dimension, which is referred to as the Time Linear Expanding/Compressing78

(TLEC)-based method. The TLEC can be applied to the entire batch run [9], which is the technique79

implemented in SIMCA Release 13.0.3 -Umetrics software- [10], or within stages that are defined by key80

process events [11, 12], which is one of the synchronization techniques coded in ProMV Batch Edition Release81

13.02 -ProSensus software- [13]. Other linear interpolation-based strategies also exist [12, 14]. Additionally,82

the linear interpolation can be applied in an indicator variable dimension, following the so-called Indicator83

Variable-based synchronization, IV [15]. A second strategy is formed by methods based on features extraction84

[2, 16, 17, 18]. Finally, a third category are the methods based on Stretching, Compressing and Translating85

pieces of trajectories (the SCT-based methods), such as Dynamic Time Warping (DTW) [19] and Relaxed86

Greedy Time Warping (RGTW) [20]. In [19], an end-of-batch version of DTW for batch synchronization was87

proposed and some guidelines to carry out the real-time synchronization were also presented. Nonetheless,88

this real-time version was proved to be inappropriate in BMSPC due to the false alarms produced in process89
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Figure 1: Modelling scheme in BMSPC systems based on PCA.



monitoring, being the RGTW a solution to overcome this problem [20]. Other SCT-based methods were90

proposed in the literature for batch synchronization in off-line and real-time applications [21, 22].91

After synchronization, a preprocessing step is required before model calibration. Depending on the92

nature of batch data and the type of model to be fitted, the preprocessing approach may be different [23].93

Two main preprocessing methods are widely used in process chemometrics: trajectory centering and scaling94

(Trajectory C&S) and variable centering and scaling (Variable C&S). The former consists of mean centering95

and scaling to unit variance the data corresponding to each j-th process variable at each k-th sampling point,96

i.e. each vector xjk is mean-centered and scaled to unit variance (see Figure 1(j)). Provided the synchronized97

3-way data structure contains J variables, K sampling points and I batches, this means that J ·K averages98

and standard deviations are computed from I batches each. These averages are then subtracted to the99

corresponding data and, then, the I observations corresponding to the j-th process variable at the k-th100

sampling point are scaled to unit variance. This normalization allows each process variable at each time to101

have the same weight in the multivariate analysis. Variable C&S performs mean centering and scaling to102

unit variance of the data corresponding to each j-th process variable. This means that each lateral slab Xj103

is mean-centered and scaled to unit variance (see Figure 1(k)). Hence, J averages and standard deviations104

are computed from I ·K observations each. Again, these averages (also called grand means) are subtracted105

and, subsequently, the centered data is scaled to unit variance. With this normalization, time periods with106

more variability will be weighted more and periods with lesser variability (e.g. under tight control) will get107

a small weight in the multivariate analysis. Two main advantages of Trajectory C&S over Variable C&S108

makes the former more suitable than the latter for BMSPC: i) Trajectory C&S models the variability around109

the average trajectory, which is actually the type of variability of interest to monitor a batch process [24];110

and ii) the non-stationary problem is transformed into a stationary problem since the average trajectory is111

removed from batch 1. The discussion about which of these two choices is more adequate has been present112

in the literature [24, 25] since the two main pioneer research work in BMSPC [26, 27] selected one of them113

each. Nomikos and MacGregor [26] performed Trajectory C&S whereas Wold et al. [27] used Variable C&S.114

After the desired variability is kept on data, the transformation of the 3-way data matrix to a 2-way data115

matrix can be carried out.116

In model calibration, the aligned and preprocessed 3-way data matrix X− needs to be rearranged in a117

number of 2-way submatrices to fit bilinear models, such as PCA or PLS. The different approaches to118

perform this transformation can be classified into three categories: the single-model approach, the K-model119

approach and the hierarchical approach.120

In the single-model approach, the 3-way matrix is unfolded in a single 2-way matrix. There are several121

unfolding choices, which differ in the number of process variables lagged in time (the so-called Lagged Mea-122

surement Vectors, LMV): variable-wise [27], batch dynamic [28] and batch-wise unfolding [15, 26] (see Figure123

1(a), Figure 1(b) and Figure 1(c), respectively). Batch dynamic unfolding can be seen as a generalization124

of the traditional unfolding procedures [6]: if no LMV is added, the resulting matrix is the same as the one125

after variable-wise unfolding - i.e. X (IK × J); if all possible LMV are added, the resulting matrix is the126

same as the one after batch-wise unfolding - i.e. X (I ×KJ). The addition of a certain number of LMVs127

depends on two factors: the order of the dynamics that need to be modeled and/or how the correlation128

structures changes throughout the batch run, i.e. the way process variables are related with each other and129

in time [6].130

The K-models approach is based on generating as many bilinear models as sampling points in a batch.131

Several proposals can be found in the literature, which differ in the data used in the generation of the132

sub-models. If each sub-model only incorporates measurements collected at the current sampling point,133

then it is called local model [29] -i.e. X (I × J) (see Figure 1(d)). If measurements registered from the134

beginning of the batch to the current sampling point k are taken into account in each sub-model -i.e.135

X (I × kJ)-, then it is known as evolving model [29]. This approach can be seen as a local model at136

the k-th sampling time where all the possible LMV are included as additional variables [6]. Special cases137

1Provided the batch process is under tight control so that the process can be considered to be stationary in the batch
dimension
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of evolving models are Uniformly Weighted Moving Window (UWMW)[30] and Exponentially Weighted138

Evolving Window (EWEW) models, which are used when not all the past information (lagged information)139

is of interest or has the same importance in bilinear modeling [6]. UWMW models are based on modeling140

the information contained into a window of width nk, i.e. the measurements collected at the k-th current141

sampling point with those of the immediate nk LMVs. This information can be also seen as a local model142

at the k-th sampling time where nk LMVs are included as observations -i.e. X (nkI × J)- (see Figure143

1(f)) or as variables -i.e. X (I × nkJ)- (see Figure 1(h)). In contrast, EWEW models incorporate all the144

lagged measurements to the k-th current sampling point, which are weighted following an exponentially145

decreasing profile associated to the weighting factor λk ∈ [0, 1]. With this factor, the measurements are146

losing importance over the batch duration and their contribution to the covariance matrix is down-weighted147

[6]. The weight of the measurement-vector collected at time k − d, for the generation of the sub-model at148

time k, is (λk)d, being the weight of the current measurements always (λk)0 = 1. This is equivalent to a149

local model at the k-th sampling point where all the possible LMV are added either as observations -i.e.150

X (kI × J)- (see Figure 1(g)) or as variables -i.e. X (I × kJ)- (see Figure 1(i)) and exponentially weighted.151

One of the advantages of these K-model approaches is that they are capable of capturing varying dynamics152

of certain order. The main drawback is the generation and maintenance of a high number of sub-models.153

For the reduction of sub-models, some authors proposed to calibrate independent linear models for each one154

of the process stages (the so-called multi-stage approach) [2, 31] or separately model segments of batch data155

that are well approximated by a linear model (PCA or PLS) [32]. For more detail on the structure of the156

different K-model approaches, the interested reader is referred to the first paper of the series [6].157

The hierarchical approach is based on combining the past and current information at each sampling158

point with an adaptive hierarchical PCA model (see Figure 1(e)) [33]. Firstly, a PCA model is fitted on the159

information belonging to the first sampling point, i.e. X1 (I × J). At sampling time point k, the overall160

score vector tk−1, which summarizes previous process variation up to the sampling time point k− 1, is used161

together with matrix Xk to estimate the block scores rk. Afterwards, this score vector is weighted by the162

forgetting factor d (adaptive nature) and placed together with the previous overall score vector tk−1 in the163

consensus matrix Rk. This matrix is then used to calculate the overall scores vector tk, which represents164

the total process variation up to the sampling point k. For more details, the reader is referred to [33].165

Once batch data have been properly prepared, calibrated and outliers have been isolated, a monitoring166

scheme can be built. Typically, two Shewhart control charts based on the Hotelling-T 2 and Squared Predic-167

tion Error (SPE) statistics are designed. Their control limits (thresholds) are estimated from NOC process168

data. Also, it is recommended to readjust these limits using cross-validation techniques for an imposed169

significance level (ISL) [29, 34, 35]. Once the scheme is designed, the measurements from a new batch can170

be projected onto the latent subspace, yielding to the aforementioned multivariate statistics, to check for171

the correct performance of the process.172

3. Material and methods173

The different modeling approaches under study are compared in terms of parameter stability using174

data from realistic simulations of a fermentation process of the Saccharomyces cerevisae cultivation. Two175

data sets were generated based on the biological model of the aerobic growth of S. Cerevisae on a glucose176

limited medium [36] (available in the MP toolbox [37]), using Simulink for Matlab release 2010a R© ( c©The177

MathWorks, Inc). Parameter stability is assessed by modeling the batch data of both data sets using the178

approaches under study and comparing the model parameters fitted.179

In the simulation of batch data, physical uncertainty caused by the biological variability is taken into180

consideration. Slightly modified values of constants of the first principles model are introduced into the181

parametric space. Also, Gaussian noise of low magnitude is added in the initial conditions (10%) and182

measurements (5%) to simulate the typical errors in sensors is added. Furthermore, the simulation achieved183

here takes into account the biological variability of yeasts. In fermentation processes, characterized by a184

duration of days, some microorganisms may have different generation times, with a significant influence on185

biomass growth and quality features. This is the main cause why this type of process presents different186

release times for different batches.187
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A total of 30 unsynchronized batches for each data set are simulated under normal operating conditions188

and in two different simulation sequences to ensure independency2. Ten process variables are measured189

every sampling time over all batches: concentrations (glucose, pyruvate, acetaldehyde, acetate, ethanol and190

biomass), active cell material, acetaldehyde dehydrogenase (proportional to the measured activity), specific191

oxygen uptake rate and specific carbon dioxide evolution rate. Also, the original time of processing from192

simulation is added to the batch data matrix. The total length of the batches belonging to the first data193

set varies from 172 to 330 data points, and in the second data set from 173 to 297 data points.194

Prior to proceeding with the comparative study, both data sets need to be synchronized. For this purpose,195

methods working in the domain of the batch time (SCT-based and TLEC-based methods) and in the domain196

of an indicator variable (IV) are used. For the sake of simplicity, only two SCT-based methods (DTW and197

RGTW algorithms) are chosen (see Table 1). For the DTW-based synchronization on raw batch data, the198

reference batch selected in both data sets is is that whose batch length is the closest to median length from199

the first data set: batch #12. This is also the reference batch for the RGTW-based synchronization on raw200

batch data. The rest of conditions and constraints, both for the classical DTW and the RGTW algorithm,201

are set according to [19, 20]. The TLEC is carried out in raw batch data by linearly interpolating 209202

data points (the length of the reference batch, batch #12 belonging to the first data set) in each batch.203

In order to check to what extend TLEC correctly synchronizes the batch trajectories (i.e. the key process204

events overlap in all batches ensuring the same process evolution), the TLEC-based synchronized batch205

trajectories are re-synchronized, i.e. synchronized once again, with SCT-based methods. In particular, a206

second synchronization using the DTW algorithm (TLEC-DTW) and the RGTW algorithm (TLEC-RGTW)207

with the aforementioned parameters is performed. Finally, the TLEC-based synchronization between stages208

defined by key process events (TLEC events) is carried out. For the sake of comparison, batch #12 from209

the first data set is selected as reference batch. A total of 10 key events placed at sampling points #23,210

#38, #54, #65, #89, #96, #104, #119, #140 and #166 in the reference batch are extracted by examining211

its variable trajectories. Afterwards, time linear interpolation is performed between time periods limited by212

the defined key process events across batches, yielding a set of synchronized trajectories with 209 sampling213

points. Concerning IV-based synchronization, the biomass concentration is selected as indicator variable214

given its monotonic and increasing behavior. To fulfil the requirements of IV, a start and end point in the215

biomass concentration variable is selected across batches. A total of 209 data points are obtained by linear216

interpolation. In addition, a second synchronization on the IV-based synchronized trajectories using the217

DTW algorithm (IV-DTW) and the RGTW algorithm (IV-RGTW) with the parameters specified above is218

carried out. The purpose of this re-synchronization is again to check to what extend IV properly synchronizes219

the key process events.220

The comparison of the PCA-based MSPC approaches in terms of the parameter stability is organized221

in three categories: single-model approaches, K-model approaches and hierarchical-model approaches (see222

Table 2). Among the single-models, variable-wise (VW), batch dynamic (BD) and batch-wise (BW) models223

are studied. The approaches VW-TCS and VW-VCS represent a variable-wise unfolding where Trajectory224

C&S and Variable C&S3 are performed, respectively. BD1 denotes a batch-dynamic model where 1 LMV is225

added as new variables and Trajectory C&S is applied. BW represents a batch-wise model where Trajectory226

C&S is applied. Regarding the K-model approaches, local K-models and evolving models in their different227

variants are studied. LM represents local K-models with Trajectory C&S. The approaches UWMW 1LMV-228

var and UWMW 1LMV-obs denote Uniformly Weighted Moving Window models with Trajectory C&S229

generated by adding 1 LMV as new variables and observations, respectively. EWEW-var and EWEW-obs230

correspond to Exponentially Weighted Evolving Window models generated by adding all the possible LMVs231

at the k-th sampling time as new variables and observations, respectively. Also, Trajectory C&S is applied232

and a weighting factor λk ∈ [0, 1] is used, where λ = 0.97. In addition, the adaptive approach of the local233

K-models with d = 0.2 and d = 50, i.e. AHKM, is also included in the study.234

2The seed used in the simulation differs for each data set to obtain different sequences of random numbers, which are used
to generate Gaussian noise and the length of batches

3The application of Variable C&S is only meaningful in VW. Hence, this preprocessing approach is not taken into consid-
eration for the rest of BMSPC approaches in this study

6



Table 1: Synchronization approaches used in the study of the parameter stability to synchronize batch data.

Domain Approach Model Parameters

Time

DTW Reference: batch #12 (209 time points), constraints according to [19]
Stretching/Compressing/Translating
(SCT)-based method

RGTW Reference: batch #12 (209 time points), constraints according to [20]

TLEC 209 interpolation points
Time Linear Expanding/Compressing
(TLEC)-based method

TLEC-events
209 interpolation points, key processes events at sampling points:
#23, #38, #54, #65, #89, #96, #104, #119, #140 and #166

(TLEC & SCT)-based method
TLEC-DTW Parameters from TLEC and DTW models

TLEC-RGTW Parameters from TLEC and RGTW models

Variable

IV-based method IV Indicator variable: variable #6 (Biomass concentration)

(IV & SCT)-based method
IV-DTW Parameters from IV and DTW models

IV-RGTW Parameters from IV and RGTW models

Table 2: BMSPC approaches used in the study of the parameter stability. M represents the number of PCA
models fitted in each modeling approach.

Approach Model Structure Preprocessing # Parameters per loading vector
BW Batch-wise Trajectory C&S J ·K

Single-model VW-TCS Variable-wise Trajectory C&S J
(M = 1) VW-VCS Variable-wise Variable C&S J

BD1 Batch-dynamic with 1LMV Trajectory C&S J · (1 + LMV )
LM Local K-model Trajectory C&S J
UWMW 1LMV-var Uniformly Weighted Moving Window

Trajectory C&S nkK-model with 1LMV in the variables
Multi-model UWMW 1LMV-obs Uniformly Weighted Moving Window

Trajectory C&S J
(M = K) K-model with 1LMV in the observations

EWEW-var Exponentially Weighted Evolving Window
Trajectory C&S k · J, for k from 1 to K

K-model with 1LMV in the variables and λk

EWEW-obs Exponentially Weighted Evolving Window
Trajectory C&S J

K-model with 1LMV in the observations and λk

Hierarchical-model
AHKM

Adaptive hierarchical K-model with d = 0.2 and
Trajectory C&S J

(M = K) d = 50

7



A priori, there are clear equivalences and an important interplay between the parameter stability in the235

preprocessing and in the unfolded model. To compare the parameter stability of each one of the calibration236

and monitoring approaches, the Normalized Squared Difference (NSD) between the different parameter237

vectors (averages, standard deviations, sum of squares and loadings) is computed as follows:238

NSDθ =

J∑
j=1

 θ
(1)
j∥∥∥θ(1)
∥∥∥ −

θ
(2)
j∥∥∥θ(2)
∥∥∥
2

(1)

where θ
(1)
j and θ

(2)
j correspond to the j -th value in the parameter vectors θ(1) and θ(2) for the first and239

second data set, respectively. To make the NSD values of the loadings comparable across approaches, two240

factors need to be taken into account in the estimation: the number of PCA models and the number of241

parameters. As illustrated in Table 2, M = 1 and M = K different models are obtained from PCA-based242

bilinear modeling in the single-model and multi-model approach, respectively. The size of the loading vectors243

in each model depends on the number of LMV added as new variables. To make all the models comparable,244

the NSD values are estimated as an average of the NSD values calculated on the loadings corresponding to245

each sampling point k (i.e. NSDθ =
K∑
k=1

NSDθk/K, where NSDθk is assessed by following Equation (1)).246

When including LMVs, exception made for BW models, data from a specific sampling time are used more247

than once to fit parameters in the same (BD) or different submodels (e.g. UWMW). When this occurs,248

parameters in the form of LMVs are not considered to compute the NSD. To properly estimate the NSD249

values in loadings, the sign change of loadings due to the rotational ambiguity in PCA is taken into account.250

For this purpose, each loading vector pa is corrected by the sign of the absolute maximum loading. Note that251

the averaged NSD value allows us to compare the NSD values of single models including the complete batch252

history (BW/AKHM), single models where the batch history is averaged (VW-VCS/VW-TCS), singles253

models with LMVs (BD) and K-models with LMVs as observations (UWMW-obs/EWEW-obs) and as254

variables (UWMW-vars/EWEW-vars).255

Batch data synchronized by all the synchronization approaches under study (see Table 1) are employed256

to study the effect of batch synchronization on parameter stability in Section 4. To proceed with the257

comparison of the rearranging methods in terms of parameter stability in Section 5, for the sake of easy258

understanding only the two data sets synchronized by using the RGTW algorithm are used.259

4. Effects of batch synchronization on parameter stability260

A critical factor in the modeling of batch data is the synchronization quality, i.e. the accuracy of the261

synchronization approach to overlap the key process events across batches. An indicator of this factor is262

the variability of the resulting synchronized batch trajectories around their mean trajectory. This can be263

measured by the standard deviation vector after trajectory C&S. The lower the difference among standard264

deviation vectors, the higher the synchronization quality.265

In order to compare the methods, the average of the standard deviation vectors of the corresponding syn-266

chronized batch trajectories of both data sets are computed and shown in Figure 2. This figure reveals that267

when SCT-based methods are applied in batch data, the resulting standard deviation values are lower (blue268

dots and black asterisks lines in Figure 2(a), 2(b) and 2(c), respectively) than for the rest of synchronization269

methods. This implies that SCT-based methods outperform the other approaches in terms of reduction270

of trajectory variability. Note that the differences are more prominent in Variables #1, #5, #6, #9, #10271

and #11 in all the comparisons. Concerning the TLEC-based methods, TLEC-based synchronized batch272

trajectories yield standard deviation values much higher (red empty squares lines in Figure 2(a)) than those273

synchronized with TLEC-events (magenta empty circles lines in Figure 2(a)). Hence, the latter synchronizes274

the batch trajectories with more accuracy, reducing the variability in comparison with the former. Another275

issue worth being highlighted is that the standard deviation vectors calculated from the batch trajectories276

synchronized and re-synchronized by SCT-based methods do not differ much each other (compare black,277

blue and red empty circles -i.e. DTW, TLEC-DTW and IV-DTW- with black, blue and red dots -i.e.278
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Figure 2: Standard deviation vector of the synchronized trajectories (average from both data sets) using the
synchronization methods under study: (a) comparison between the SCT-based and TLEC-based methods:
blue dots (RGTW), black asterisks (DTW), magenta empty circles (TLEC-events) and red empty squares
lines (TLEC); (b) comparison between the (TLEC & SCT)-based and TLEC-based methods: blue dots
(TLEC-RGTW), black asterisks (TLEC-DTW) and red empty squares (TLEC) lines; (c) comparison be-
tween the (IV & SCT)-based and IV-based methods: blue dots (IV-RGTW), black asterisks (IV-DTW) and
red empty circles (IV) lines; and (d) comparison between SCT-based methods and (TLEC/IV & SCT)-based
methods: black empty circles (DTW), black dots (RGTW), blue empty circles (TLEC-DTW), blue dots
(TLEC-RGTW), red empty circles (IV-DTW) and red dots (IV-RGTW).
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RGTW, TLEC-RGTW and IV-RGTW-, respectively, in Figure 2(d)). This denotes a similar performance279

among synchronization methods (RGTW and DTW) in terms of synchronization. Notice, however, that280

RGTW performs the synchronization in real-time, while DTW requires to wait until the batch has finished281

to perform the synchronization.282

This outcome shows that when synchronization is focused on aligning the key process events (SCT-based283

synchronization), the addition of artefacts and, consequently, the amount of noise, is reduced. Hence, the284

variability of the resulting batch trajectories is lower that those where the key process events are not properly285

synchronized (TLEC-based and IV-based synchronization). The resulting standard deviation vectors after286

applying a second SCT-based synchronization in trajectories already synchronized by TLEC (see blue dots287

and black asterisks lines in Figure 2(b)) and by IV (see blue dots and black asterisks lines lines in Figure 2(c))288

contain lower values than those derived from the synchronized trajectories by TLEC and IV (see red empty289

squares line in Figure 2(b) and see red empty circles line in Figure 2(c), respectively). The enhancement of290

the synchronization (i.e. the difference of standard deviation among synchronization approaches) are clearly291

higher in the TLEC approach than in the IV approach.292

Table 3: Comparison of the different preprocessing and synchronization approaches (a), and the different
modeling and synchronization approaches (b) under study using the NSD values. NSD: normalized squared
differences between the average and standard deviations vectors (a) and between the first loading vector (b)
of the two simulated data sets.

Trajectory C&S Variable C&S

Synchronization
Mean Standard deviation Mean Standard deviation

method
IV-RGTW 3.804e-04 1.989e-02 8.404e-06 2.196e-05
IV-DTW 1.739e-03 2.546e-02 2.613e-05 1.697e-04
IV 3.383e-04 1.695e-02 7.508e-06 3.022e-05
TLEC-RGTW 2.925e-05 1.856e-02 8.181e-06 8.363e-06
TLEC-DTW 4.184e-05 2.127e-02 7.630e-06 9.321e-06
TLEC 1.600e-03 3.162e-02 3.065e-04 8.980e-05
TLEC-events 1.308e-04 3.493e-02 9.388e-06 1.493e-05
RGTW 7.012e-05 2.000e-02 7.412e-06 5.007e-06
DTW 3.010e-05 2.077e-02 6.958e-06 3.022e-06

(a)

Single Model Multi-Model Hierarchical-Model

Synchronization
BW VW-TCS VW-VCS BD1 LM

UWMW UWMW
EWEW-var EWEW-obs

AHKM AHKM
method 1LMV-var 1LMV-obs d = 0.2 d = 50
IV-RGTW 7.906e-02 8.458e-03 8.289e-05 1.753e-03 9.671e-02 1.305e-01 8.401e-02 1.374e-01 4.143e-02 3.912e-01 9.672e-02
IV-DTW 8.311e-02 1.034e-02 2.349e-04 2.141e-02 9.782e-02 1.871e-01 7.686e-02 1.196e-01 2.904e-02 1.738e-02 9.786e-02
IV 1.033e-01 2.037e-01 3.144e-05 3.388e-01 2.038e-01 2.431e-01 1.975e-01 1.932e-01 9.886e-02 4.769e-01 2.038e-01
TLEC-RGTW 1.400e-01 1.532e-02 4.749e-06 3.071e-02 3.297e-01 2.822e-01 2.616e-01 1.643e-01 1.534e-01 1.615e-01 3.296e-01
TLEC-DTW 1.439e-01 4.960e-03 5.598e-06 8.606e-03 3.145e-01 2.791e-01 2.248e-01 1.649e-01 1.241e-01 1.661e-01 3.144e-01
TLEC 3.551e-01 6.736e-03 9.028e-03 1.428e-02 3.478e-01 3.244e-01 3.119e-01 3.433e-01 3.004e-01 6.571e-01 3.477e-01
TLEC-events 1.747e-01 2.398e-03 1.265e-04 3.866e-03 3.338e-01 3.177e-01 2.911e-01 2.879e-01 6.504e-02 2.912e-01 2.337e-01
DTW 1.454e-01 1.934e-03 8.069e-06 3.301e-03 3.199e-01 2.719e-01 2.159e-01 1.703e-01 5.817e-02 1.712e-01 2.197e-01
RGTW 1.524e-01 5.137e-03 3.699e-06 1.019e-02 3.582e-01 2.640e-01 2.405e-01 1.715e-01 6.858e-02 1.706e-01 3.580e-01

(b)

Comparing SCT-based synchronization and re-synchronization, some findings are worth being high-293

lighted. No important differences are found between the standard deviations derived from batch data after294

applying an SCT-based synchronization (see black empty circles and dots Figure 2(d)) and those derived295

after applying an SCT-based synchronization in trajectories already synchronized by TLEC (see blue empty296

circles and dots Figure 2(d)). In contrast, notable differences are observed between the resulting standard297

10



0.05

0.1

0.15

0.2

0.25

0.3

D
TW

R
G
TW IV

TLE
C

TLE
C
−E

VEN
TS

TLE
C
−D

TW

TLE
C
−R

G
TW

IV
−D

TW

IV
−R

G
TW

Synchronization approach

N
S

D

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

BW

VW
−T

C
S

VW
−V

C
S

BD
1

LM

U
W

M
W

 1
LM

V−o
bs

U
W

M
W

 1
LM

V−v
ar

EW
EW

 1
LM

V−o
bs

EW
EW

 1
LM

V−v
ar

AH
KM

 d
=0

.2

AH
KM

 d
=5

0

Modelling approach

N
S

D

(b)

Figure 3: LSD intervals (95 % confidence) for the NSD values estimated from the first loading vector of
both data sets for (a) the synchronization method and (b) the modeling approach.

deviations after an SCT-based synchronization in trajectories already synchronized by IV (see red empty298

circles and dots Figure 2(d)) and the other synchronization approaches. These differences are originated by299

the change of shape of the original batch trajectories, which are caused by the IV-based synchronization.300

Consequently, the associated standard deviations differ from those obtained after applying an SCT-based301

synchronization to either the original or the trajectories already synchronized by TLEC. It leads to differ-302

ences that are not comparable each other.303

An Analysis of Variance (ANOVA) was performed on the NSD values of each preprocessing parameter304

i.e. mean and standard deviation- (see Table 3(a)) using the preprocessing and synchronization approach as305

factors. The objective of this analysis is to determine if there exist statistical differences among approaches306

in stability. The outcome of the ANOVA on the means suggests that the simple effect of the preprocessing307

is statistically significant (p-value = 0.06). In terms of parameter stability, Variable C&S shows better308

results (statistically lower NSD values on average, NSDmn,V CS = 4.312e-05) in comparison to Trajectory309

C&S (statistically higher NSD values on average, NSDmn,TCS = 4.844e-04). The ANOVA on the standard310

deviations yielded that the simple effect of the preprocessing approach is statistically significant (p-value <311

0.05). The NSD values corresponding to Variable C&S are statistically lower on average (NSDstd,V CS =312

3.918e-05) than those from Trajectory C&S (NSDstd,TCS = 2.329e-02), showing an outperformance of the313

former compared to the latter in terms of stability. Note that the uncertainty in the preprocessing parameters314

is inherited in the loadings (see Table 3(b)). This will be discussed in detail in next section.315

In order to check if there are statistically differences among modeling and synchronization approaches, an316

ANOVA was performed on the NSD values of the PCA modeling parameters -i.e. first loading vector- (see317

Table 3(a)). This yielded that both, both the effects of the synchronization and the modeling approach are318

statistically significant (p-value < 0.05). In order to find out specific differences, the 95% confidence Least319

Significant Differences (LSD) intervals are computed (see Figure 3). The NSDs corresponding to batch data320

synchronized by the group of SCT-based methods are statistically lower on average (NSDDTW = 1.434e-01321

and NSDRGTW = 1.635e-01) than those synchronized by using TLEC-based method (NSDTLEC = 2.743e-322

01). The TLEC method is also outperformed by TLEC-events (statistically lower NSD values on average,323

NSDTLEC−events = 1.820e-01). Re-synchronization with SCT-based methods provides statistically signifi-324

cant improvements for both TLEC (statistically lower NSD values on average: NSDTLEC−DTW = 1.587e-01325

and NSDTLEC−RGTW = 1.700e-01 in comparison with NSDTLEC = 2.743e-01) and IV (statistically lower326

NSD values on average: NSDIV−DTW = 6.734e-02 and NSDIV−RGTW = 1.309e-01 in comparison with327

NSDIV = 2.057e-01). Hence, the better the key process events are synchronized, the higher stability in the328
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(c) SD: zoom corresponding to Variable #3 (acetaldehyde
concentration)

Figure 4: Batch-wise unfolding and Trajectory C&S. Comparison of the preprocessing parameters (means
and standard deviations) obtained from the two simulated data sets batch-wise unfolded, after applying
Trajectory C&S. NSD: normalized squared differences between the average and standard deviations vectors
of the two simulated data sets.

loadings. Finally, similar results in terms of parameter stability are found for RGTW and DTW. Therefore,329

the RGTW algorithm seems to be an adequate procedure to be used both in real-time and end-of-batch330

process monitoring in terms of parameter stability.331

From these results, the application of other SCT-based synchronization methods (e.g. [21, 22]) may332

deserve further research.333

5. Effect of the rearranging methods on parameter stability334

In this section, the study of the parameter stability associated to the most used rearranging methods is335

carried out. The discussion on the single-model approaches -i.e. BW, VW and BD- is introduced in Sub-336

sections 5.1, 5.2 and 5.3, respectively. In addition, the study on the K-model approaches -i.e. LM, UWMW337

and EWEW- is presented in Subsection 5.4. Finally, the parameter stability of the hierarchical approaches338
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(a) Linear scale
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(b) Logarithmic scale

Figure 5: Batch-wise unfolding and Trajectory C&S. Explained Sum of Squares (SS) vs #PCs extracted in
batch-wise unfolding from the two simulated data sets. Note that PC #0 corresponds to the sum of squares
remained after applying Trajectory C&S on batch data. NSD: normalized squared differences between the
sum of squares vector captured by each PC of the two simulated datasets.

-i.e. AHKM- is studied in Subsection 5.5. For the sake of simplicity, the two data sets synchronized by339

using the RGTW algorithm are used.340

5.1. Batch-wise unfolding341

As was stated in Section 1, parameter stability depends on two main factors. Firstly, precise identification342

relies on the availability of a sufficiently large calibration data set. Secondly, the more different the sum-of-343

squares captured by each PC, the more stability in the model parameters [38].344

The first question is the amount of calibration data which is enough to identify the parameters accurately.345

In Figure 4, the preprocessing information (i.e., means and standard deviations) corresponding to the two346

data sets generated is compared. At first glance, the preprocessing parameters identified seem to be identical.347

Nonetheless, the zoom performed in Figure 4(c) shows that there are slight differences. The reason for this348

is that a high number of means (J ·K) and standard deviations (J ·K) is identified using only I batches,349

which is in principle a low number compared to the number of estimated parameters. For instance, in the350

present example, J · K = 2090 means and standard deviations are computed from I = 30 batches. This351

uncertainty can be also checked by the NSD values computed for the means and the standard deviations:352

3.010e-05 and 2.077e-02, respectively. As can be seen, there is variability in the preprocessing statistics353

between the two data sets, being lower in the mean than in the standard deviations. When the standard354

deviations are computed, the uncertainty from the mean is inherited. Hence, the resulting uncertainty is355

higher due to the accumulation of variability in the preprocessing parameters.356

Concerning the second factor, if the sum-of-squares extracted in each PC is different enough in compar-357

ison to subsequently extracted PCs, low uncertainty in the parameters estimation is expected for a large358

calibration data set. In some situations and for some applications, it is not a problem to have several PCs359

with a similar amount of sum-of-squares captured. All of them can be included in the PCA model, or360

otherwise discarded and left in the residuals. Nonetheless, it is important to be aware of the uncertainty361

introduced in the loadings when this occurs. For this reason, it is always recommended to have a look362

at the sum-of-squares captured by each PC. Figure 5 shows the plot of the explained sum-of-squares vs363

#PCs extracted for the current example assuming batch-wise unfolding and Trajectory C&S. For the sake364

of visualization, both the linear and logarithmic scales are presented. As it can be seen, the sum of squares365

captured by PC#1 (SS1 ≈ 4.500e + 04) explains a high percentage of the sum of squares remained after366
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(b) Zoom corresponding to Variables #1 and #2

Figure 6: Batch-wise unfolding and Trajectory C&S. Comparison of the loading vector corresponding to
the first PC obtained from the two simulated data sets batch-wise unfolded, after applying Trajectory C&S.
NSD: normalized squared differences between the first loading vector of the two simulated data sets.
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Figure 7: Batch-wise unfolding and Trajectory C&S. Trajectory of Glucose concentration (variable #1) after
trajectory centering and scaling in some of the batches of the second simulated data set.
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applying Trajectory C&S on batch data, i.e. SS0, (approximately 70%) and differs enough from that cap-367

tured by PC#2 (SS2 ≈ 1.800e + 04). Consequently, the loadings of the first PC are expected to be stable.368

Note that the sum of squares captured from PC#3 onwards are similar and, therefore, their corresponding369

loadings are not expected to be stable. In the present investigation, we will only focus on those PCs which370

are expected to be stable in order to draw conclusions about the effect of applying one specific BMSPC371

method in the stability of the parameters. Thus, parametric instability motivated by a specific BMPSC372

structure is distinguished from that due to PCs with similar captured variance, which is expected to affect373

the PCA models independently of the BMSPC method of choice.374

There is a comment in due regarding the use of a plot like the one in Figure 5 to check for stability of the375

model parameters. The sum-of-squares in the curves are a pool of the data corresponding to the different376

sampling times and process variables. Nonetheless, this pool may not be representative of some parts of the377

data and should be checked with the loading vectors and, subsequently, with the raw batch trajectories.378

In Figure 6, the two loading vectors corresponding to the first PC obtained for the two data sets generated379

are shown. Inaccuracies in the preprocessing estimation are inherited in the identification of the PCs. In380

particular, the NSD value corresponding to the first loading vector of both data sets is equal to 1.524e-01,381

denoting an increasing instability with respect to the preprocessing parameters. Furthermore, each PC382

contains J · K parameters, the same number of means or standard deviations estimated previously. The383

parameters are, again, estimated from I observations each. It is clear that there is a parallelism between384

trajectory centering and scaling, and batch-wise unfolding from the point of view of uncertainty estimation.385

In the zoom of Figure 6(b), the loadings corresponding to the glucose concentration (variable #1) and386

pyruvate concentration (variable #2) are shown. Several loadings have such uncertainty that they present387

different sign for the two data sets. Nonetheless, most of this variability is due to noise since most of loadings388

take values around zero (e.g., from the 60th to the 209th loading and from the 260th to the 418th loading389

belonging to variable #1 and #2, respectively, see Figure 6(b)). Despite the fact that with batch-wise390

unfolding a very complete modeling structure can be estimated [6], the noisy loadings shown in Figure391

6 suggest model over-parametrization (i.e. overfitting). In any case, important parts are captured. For392

instance, the loadings of high magnitude in the interval [1,50] are reflecting the high auto-correlation of the393

first variable (glucose concentration) during that period in the aligned data sets (see Figure 7).394

5.2. Variable-wise unfolding395

As already discussed, a factor where the parameter stability relies on is the amount of observations used396

in the parameter estimation. In Variable C&S, a total of J means and J standard deviations are identified397

using I · K observations. In this example, J = 10 and I · K = 6270. Due to the fact the number of398

parameters-to-the number of observations ratio in Trajectory C&S (RTCS = J·K
I = 2090

30 ) is much higher399

than in Variable C&S (RV CS = J
I·K = 10

6270 ), the uncertainty in the estimation in the former is also higher400

than in the latter. This was also observed in the results of Section 4.401

In Figure 8, the explained sum-of-squares vs #PCs extracted for the current example assuming variable-402

wise unfolding and Trajectory C&S (see Figure 8(a)) and Variable C&S (see Figure 8(b)) are shown. Note403

that the sum-of-squares at PC#0 remaining after Variable C&S for both data sets (SS0 =6.896e+04) is404

slightly higher than after Trajectory C&S (SS0 =6.667e+04). This has nothing to do with stability and405

it is due to the different type of preprocessing carried out. In the former, the remaining sum-of-squares is406

equal to SS0 = (I · K − 1) · J = (30 · 209 − 1) ∗ 11 = 6.896e+04 units whereas in the latter is equal to407

SS0 = (I − 1) ·K · J = (30− 1) ∗ 209 ∗ 11 = 6.667e+04.408

Again, the model parameter stability is studied by assessing how different the sum-of-squares captured409

by each PC are. Firstly, in the case of VW with Variable C&S (Figure 8(a)), the sum of squares captured410

by PC#1 (SS1 ≈ 4.145e + 04) explains a high percentage of the sum of squares remained after applying411

Variable C&S on batch data, i.e. SS0, (approximately 60%) and it is different enough to that captured by412

PC#2 (SS2 ≈ 7.700e + 03). Consequently the loadings of the first PC are expected to be stable. The sum413

of squares of PC#2, PC#3 and PC#4 seem to be quite similar and therefore their loadings may not be414

stable. Notice that this result is specific of the data set at hand, and not a feature of the modeling and/or415

preprocessing method. Secondly, in the case of VW with Trajectory C&S (Figure 8(b)), the sum of squares416
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(a) Variable C&S
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(b) Trajectory C&S

Figure 8: Variable-wise unfolding. Explained Sum of Squares (SS) vs #PCs extracted in variable-wise
unfolding from the two simulated data sets. Note that PC #0 corresponds to the sum of squares remained
after applying Variable C&S (a) and Trajectory C&S (b). NSD: normalized squared differences between
the sum of squares vector captured by each PC of the two simulated datasets.

captured by PC#1 (SS1 ≈ 5.100e + 04)) explains a high percentage of the sum of squares remained after417

applying Trajectory C&S on batch data, i.e. SS0, (approximately 75%) and again it is different enough to418

that captured by PC#2 (SS2 ≈ 7.500e + 03). As a consequence, the loadings of the first PC are expected419

to be stable. Note that the sum of squares captured from PC#2 onwards are similar, so their corresponding420

loadings are not expected to be stable. Also, uncertainty measured in the residual sum-of-squares by PC of421

each of the VW models through the NSD values (NSD=3.860e-06 and NSD=5.424e-04 for VW-Variable422

C&S and for VW-Trajectory C&S, respectively) confirms that Variable C&S outperforms Trajectory C&S423

in terms of parameter stability.424

2 4 6 8 10

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Process variable (NSD = 3.699e−06)

P
C

 #
1

(a) Variable C&S

2 4 6 8 10

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Process variable (NSD = 5.137e−03)

P
C

 #
1

(b) Trajectory C&S

Figure 9: Variable-wise unfolding. Comparison of the loading vector corresponding to the first PC obtained
from the two simulated data sets. NSD: normalized squared differences between the first loading vector of
the two simulated data sets.
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In order to compare the stability of the first PC, the corresponding loadings for both preprocessing425

methods are shown in Figure 9. In terms of NSD, the uncertainty observed in the loadings after Vari-426

able C&S (NSD=3.699e-06) is approximately three orders of magnitude lower than after Trajectory C&S427

(NSD=5.137e-03). It is inherited from a similar difference in the uncertainty of the preprocessing parame-428

ters. Hence, stability of the loadings of PC#1 in Variable C&S is higher than in Trajectory C&S.429

The results in terms of stability should be interpreted with care and in connection with other features of430

the models, as those discussed in the companion papers [6, 7]. It should be remarked that the parameters431

present low uncertainty does not guarantee the model is adequate. Note that the variability of interest in432

BMSPC is the deviation of a batch from the common trend (e.g. the average trajectory) of the process. When433

the average trajectory is not extracted in the preprocessing, like in Variable C&S, the associated variability434

remains in the data. If the data are subsequently unfolded VW, that specific variability turns into non-linear435

relationships which cannot in general be captured with a linear model, such as PCA. Therefore, VW after436

Variable C&S is not suited to capture the variability of interest in BMSPC.437

5.3. Batch-dynamic unfolding438

Figure 10 shows the explained sum of squares vs #PCs and the loading vectors corresponding to the439

first PC for the two data sets after batch-dynamic unfolding with 1 LMV and Trajectory C&S. These440

results are quite similar to those obtained for variable-wise unfolding and Trajectory C&S. Hence, Figures441

10(a) and 8(b) present a very similar shape, being the main difference that the former doubles the latter442

in explained sum-of-squares. This is the logical consequence of doubling the number of variables by adding443

one LMV. Also, Figures 10(b) and 9(b) present essentially the same relationships among variables, but444

again the former shows these relationships twice. Concerning the loadings stability, this approach yields an445

intermediate uncertainty between variable-wise and batch-wise unfolding. In particular, variability in batch-446

dynamic is lower (NSD=1.019e-02) than in batch-wise after Trajectory C&S (NSD=1.524e-01) and, higher447

than in variable-wise after Trajectory C&S (NSD=5.137e-03) and after Variable C&S (NSD=3.699e-06).448

This result is expected since batch-dynamic is a generalization of variable-wise and batch-wise (its number449

of parameter-to-number of observation ratio is higher than variable-wise, but lower than batch-wise). Figure450

10(b) also shows that the auto-correlation in the data is so high that the loadings for one variable and its451

lagged version are almost identical.452

5.4. K-models453

Figure 11 displays the loading vectors of the first PC for a) a local model, b) a UWMW model with454

1 LMV in the variables, c) a UWMW model with 1 LMV in the observations, d) an EWEW model with455

LMVs in the variables and λ = 0.97, and e) an EWEW model with LMVs in the observations and λ = 0.97.456

All the models shown correspond to sampling time k = 10 in the data sets and in all the cases data were457

Trajectory C&S.458

Essentially, the instantaneous relationships captured in the models are the same (i.e. the loading vector459

profiles are basically similar). Nevertheless, this does not necessarily has to generalize for other processes460

or numbers of LMV. In Figure 11, the NSD between the loadings corresponding to both data sets are also461

included. As previously discussed, in the approaches where 1 or all the possible LMVs are added as new462

variables, the NSD value is computed on the loading vector defined by the last J loadings (corresponding463

to the the k-th current sampling time) instead of all the loadings (like in the single-model approaches). This464

is done to make comparison between K-model approaches and with the rest of possible approaches.465

Comparing the addition of LMVs as new variables with the addition of LMVs as new observations both in466

UWMW and EWEW, the former presents higher uncertainty (NSDUWMW=2.640e-01 andNSDEWEW=1.715e-467

01) than the latter (NSDUWMW=2.405e-01 and NSDEWEW=6.858e-02) (see Figure 11(b) and Figure 11(d)468

in comparison with Figure 11(c) and Figure 11(e)). Hence, when LMV are added as new variables, there is469

a negative effect in terms of parameter fitting as a consequence of increasing the number of parameters to470

be estimated. This means that adding new parameters–adding LMV as new variables–affects negatively the471

estimation of the parameters already in the model–those for instantaneous correlations (i.e. for the loadings472

corresponding to the current sampling point). On the other hand, adding LMV as new observations has473
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Figure 10: Batch-dynamic unfolding and Trajectory C&S. Explained Sum of Squares (SS) vs #PCs extracted
(a) and first loading vector (b) in batch dynamic unfolding with 1 LMV from the two simulated data sets.
Note that PC #0 corresponds to the sum of squares remained after applying Trajectory C&S on batch data.
NSD: normalized squared differences between (a) the sum of squares vector captured by each PC and (b)
the first loading vector of the two simulated data sets.

a positive effect in the parameter stability in such a way that it reduces the uncertainty on parameters474

estimation, as a consequence of increasing the number of observations to estimate each parameter.475

It should be noted that the local models show a higher NSD than the EWEW-var and UWMW-var476

approaches, for the present data set and the metaparameters selected (number of LMV and λ). This can477

be explained by the fact that autocorrelation and lagged cross-correlation has also a smoothing effect on478

loadings, which reduces the uncertainty. A similar effect can be seen by comparing the NSD of the loadings479

corresponding to the first PC for BW (NSD = 1.524e− 01, see Figure 6) and local models. In both cases, a480

total of J ·K parameters are estimated from the data of I batches. However, a BW PCA model takes into481

account the autocorrelation and lagged cross-correlation to improve the model estimation, while local PCA482

models do not. The result is a lower uncertainty in the former than in the latters. Therefore, the inclusion of483

LMVs as variables has a double and contradictory effect on the uncertainty. Generally speaking, the increase484

in the number of parameters augments the uncertainty. This happens unless that increase is justified by a485

high level of correlation in the data. This supports the claim that the approach for transforming 3-way data486

in 2-way should be selected depending on the data at hand [39]487

5.5. Adaptive K-models488

Firstly, the identification of the PCA model parameters is studied through the sum of squares captured for489

each PC. Figure 12 shows the explained sum-of-squares (SS) vs #PCs for an adaptive hierarchical K -models490

(AHKM) approach by using weighting factors d = 0.2 (see Figure 12(a)) and d = 50 (see Figure 12(b)).491

Weighting factor d is used to give less or more importance to the information collected at the current sampling492

time with regard to the past information. This factor plays the same role as the exponential weighting factor493

in an EWMA model [33]. For low values of d, the adaptation of the model is slow, while for high values494

of d, the adaptation is fast. For values of d close to 0, the adaptive hierarchical K -model approach uses495

memory of the past information and, therefore, this approach becomes similar to batch-wise unfolding. As496

d grows further than one, the adaptive hierarchical K -model approach converges to the local K -models497

approach since the adaptive model down-weights the memory of any previous information. In the PCA with498

d = 0.2 (see Figure 12(a)), the sum-of-squares captured by PC#1 (SS1 ≈ 4.550e + 04) explains roughly499

70% of the sum of squares remained after applying Trajectory C&S on batch data, i.e. SS0, and differs500
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Figure 11: Multi-models and Trajectory C&S. First loading vector for the two data sets at the k-th sampling
time: (a) local model, (b) UWMW model with 1 LMV in the variables, (c) UWMW model with 1 LMV in the
observations, (d) EWEW model with LMVs in the variables and λ = 0.97 (only the loadings corresponding
to the k− and (k − 1)-th sampling time are shown for the sake of comparison) and (e) EWEW model with
LMVs in the observations and λ = 0.97. NSD: normalized squared difference between the first loading
vector of the two simulated data sets. In this approach, NSD is estimated as the average of the NSD values
calculated at each k sampling point.
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Figure 12: Adaptive multi-models and Trajectory C&S. Explained Sum of Squares (SS) vs #PCs extracted in
the adaptive hierarchical K model (AHKM) with (a) d = 0.2, and (b) d = 50. Note that PC #0 corresponds
to the sum of squares remained after applying Trajectory C&S on batch data. NSD: normalized squared
differences between the sum of squares vector captured by each PC of the two simulated datasets
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Figure 13: Adaptive K-models and Trajectory C&S. Normalized squared differences (NSD) between the
first loading vector of the two data sets as a function of the weighting factor d.

enough to that captured by PC#2 (SS2 ≈ 1.920e + 04). Hence, the corresponding loadings are expected501

to be stable, like in batch-wise unfolding (see Figure 5 for comparison). Again, from PC#3 onwards, the502

explained sum of squares are similar and, consequently, their corresponding loadings are not expected to be503

stable. Regarding the AHKM model with d = 50, a progressive decay of the explained sum of squares as504

a function of the number of PCs can be observed (see Figure 12(b)). The sums-of-squares captured by the505

first 2 PCs (SS1 ≈ 4.290e + 04 and SS2 ≈ 1.130e + 04) differ each other enough to consider the loadings506

of the corresponding PCs stable. In contrast, the sum of squares captured from PC#3 onwards are similar,507

so their corresponding loadings are not expected to be stable.508

With the aim of studying the effect of the weighting factor in terms of parameter stability, AHKM was509

performed for the two data sets varying the weighting factor from d = 0.1 (roughly non-adaptive model) to510
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d = 100. The corresponding NSD computed for the loadings of the first PC are shown in Figure 13. As511

can be seen, AHKM using d = 0.2 reduces the differences found between the loadings of the first PC for the512

two data sets (NSD = 1.706e-01). Note that the value of d that minimizes parameter stability may not be513

the same for different data sets and/or number of PCs. Another fact worth being highlighted is that the514

differences among loadings obtained for the two data sets are stabilized for d > 20 (e.g. NSD = 1.706e-01 for515

d = 50), due to the adaptive hierarchical-model approach converges to the classical local K-models approach516

(the curve of Figure 13 converges to the NSD value of Figure 11(a)). It apparently suggests that the lower517

the weighting factor, the more stable the model parameters in the first loading vector. This is coherent with518

the results observed for BW and local models and the discussion at the end of previous section.519

6. Conclusions520

This is the third paper of a series devoted to study the properties of bilinear batch modeling approaches.521

The first companion paper [6] presents a theoretical analysis of the principal modeling approaches focused on522

how the process -possibly changing- dynamics are captured. In the second companion paper [7], a comparison523

of several PLS modeling approaches in terms of the on-line estimation of a key variable is performed. In524

the present paper, the importance of parameter stability in PCA-based BMSPC is addressed. To obtain525

accurate PCA models for process monitoring, low variability (i.e. stability) on the model parameters is526

desired. The existence of uncertainty in both the preprocessing statistics and the latent variables yields a527

considerable amount of noise in the model that may affect the performance of the monitoring systems in528

terms of fault detection and diagnosis.529

Parameter stability depends on the synchronization method, the type of preprocessing performed in530

batch data, and the type of model and unfolding used to transform the 3-way data structure to 2-way. More531

specific conclusion in these issues are drawn below:532

• Synchronization. Accuracy in batch synchronization has been proved to have a profound impact on533

the loadings stability. The group of SCT-based methods (DTW and RGTW) outperforms the group of534

TLEC-based methods (TLEC and TLEC-events) in terms of synchronization quality, i.e. accuracy in535

synchronizing the key process events. Also, SCT-based methods outperform the rest of synchronization536

techniques in terms of stability in the loadings. Hence, the better the synchronization of key process537

events, the better the model parameter stability.538

• Preprocessing. One of the factors that parameter stability depends on is the size of the calibration539

data set. Trajectory C&S performs a mean centering of the batch data corresponding to each j-th540

process variable at each k-th sampling time point. This means that JK averages and JK standard541

deviations are computed from I batches. In contrast, in Variable C&S a mean centering and scaling542

of the batch data belonging to each j-th process variable is performed. Hence, J averages and J543

standard deviations are computed from IK observations. Comparing both preprocessing approaches,544

the number of parameters-to-number of observations ratio is much higher in Trajectory C&S than in545

Variable C&S. As was expected, the parameter stability found in this study was lower in the former546

than in the latter.547

• Rearranging method. Uncertainty found in the preprocessing parameters is directly inherited in the548

loadings, decreasing their stability. Depending on the type of rearranging method performed on the549

3-way batch data matrix, this uncertainty is considerably changed. Those methods that introduce550

more variables in the model (BW, BD, UWMW and EWEW in its variable-wise version, and AHKM,551

being the latter a particular case due to its adaptive nature) showed less stability in comparison to552

those methods that introduce more observations (VW, UWMW and EWEW in its observation-wise).553

As a side reserve effect, when a number of LMVs are added, the underlying autocorrelation and lagged554

cross-correlation in data may slightly reduce the uncertainty in the loadings, as a smoothing effect.555

However, in general speaking, the less LMV as new variables, the more stability in loadings.556
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Although this paper has been focused on the parameter stability of the different synchronization and557

modeling approaches, there is a paramount comment which is in due. For those modeling approaches where558

the number of parameters depends on the number of sampling points throughout the batch, the sampling559

frequency may be seen as a method to artificially modify the parametric uncertainty. Moreover, the lower the560

sampling frequency, the smaller the difference among modeling approaches in terms of parameter stability.561

This fact must not mislead practitioners in the decision-making about the modeling approach and the562

sampling frequency to use. Also, the fact that the parameters present low uncertainty does not guarantee563

the corresponding model is adequate for the specific process at hand and the model goal. For instance,564

Variable C&S, although yielding stable parameters, is not focused on the source of variability of interest in565

BMSPC (the deviation from the common trend). In addition, models with a low number of LMV may provide566

poor prediction performance. Hence, the modeling approach must not be selected from the consideration of567

the parameter stability alone. The findings of the present paper need to be combined with those from the568

companion papers for a proper choice. Finally, note that the case study presented is limited to a specific569

batch process, the fermentation of the Saccharomyces cerevisiae.570

This series of papers have studied three critical factors in the design of accurate monitoring/prediction571

schemes: the source of variability remaining after preprocessing, process dynamics and parameter stability.572

The setting of these factors should be balanced in such a way that PCA and PLS models are accurate in573

fault detection and diagnosis and/or in on-line prediction.574
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APPENDIX: LIST OF ABREVIATIONS579

AHKM Adaptive Hierarchical K model
BD Batch dynmic unfolding
BD1 Batch dynamic unfolding adding 1 lagged measurement vector
BMSPC Batch Multivariate Statistical Process Control
BW Batch-wise unfolding
C&S Centring and Scaling
DTW Dynamic Time Warping
EWEW Exponentially Weighted Evolving Window
EWEW-obs Exponentially Weighted Evolving Window in the observation domain
EWEW-var Exponentially Weighted Evolving Window in the variable domain
ISL Imposed Significance Level
IV Indicator Variable

IV & SCT
Synchronization performed using a SCT-based method after synchronizing batch
data with IV

IV-DTW DTW-based synchronization after performing a IV-based synchronization
IV-RGTW RGTW-based synchronization after performing a IV-based synchronization
LM Local K-model
LMV Lagged Measurement Vector
NOC Normal Operating Conditions
NSD Normalized Squared Difference
NSDDTW average NSD values for the DTW synchronization approach
NSDEWEW NSD values for the EWEW model
NSDIV average NSD values for the IV synchronization approach
NSDIV−DTW average NSD values for the combined IV-DTW synchronization approach
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NSDIV−RGTW average NSD values for the combined IV-RGTW synchronization approach
NSDmn|TCS average NSD value estimated for means in Trajectory C&S
NSDmn|V CS average NSD value estimated for means in Variable C&S
NSDRGTW average NSD values for the RGTW synchronization approach
NSDstd|TCS average NSD value estimated for standard deviations in Trajectory C&S
NSDstd|V CS average NSD value estimated for standard deviations in Variable C&S
NSDTLEC average NSD value for the TLEC synchronization approach
NSDTLEC−events average NSD value for the TLEC-events synchronization approach
NSDTLEC−DTW average NSD value for the combined TLEC-DTW synchronization approach
NSDTLEC−RGTW average NSD value for the combined TLEC-RGTW synchronization approach
NSDUWMW NSD values for the UWMW model
PC Principal Component
PCA Principal Component Analysis
PLS Partial Least Squares
RTCS Number of parameters-to-the number of observations ratio in Trajectory C&S
RV CS Number of parameters-to-the number of observations ratio in Variable C&S
RGTW Relaxed Greedy Time Warping
SCT Stretching, Compressing and Translating
SPE Squared Prediction Error
SS Explained Sum of Squares
TLEC Time Linear Expanding/Compression

TLEC & SCT
TLEC-based synchronization after synchronizing batch data with a SCT-based
method

TLEC-DTW DTW-based synchronization after performing a TLEC-based synchronization
TLEC-events TLEC-based synchronization among stages defined by key process events
TLEC-RGTW RGTW-based synchronization after performing a TLEC-based synchronization
UWMW Uniformly Weighted Moving Window
UWMW 1LMV-obs Uniformly Weighted Moving Window generated by adding 1 LMV in the observations
UWMW 1LMV-var Uniformly Weighted Moving Window generated by adding 1 LMV in the variables
VW Variable-wise unfolding
VW-TCS Variable-wise unfolding after Trajectory centering and scaling
VW-VCS Variable-wise unfolding after Variable centering and scaling
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[20] J. González-Mart́ınez, A. Ferrer, J. Westerhuis, Real-time synchronization of batch trajectories for on-line multivariate615

statistical process control using dynamic time warping, Chemometrics and Intelligent Laboratory Systems 105 (2011)616

195–206.617

[21] Y. Zhang, T. F. Edgar, A robust dynamic time warping algorithm for batch trajectory synchronization, in: Proceedings618

of American Control Conference, pp. 2864–2869.619

[22] G. Gins, P. Van den Kerkhof, J. F. M. Van Impe, Hybrid derivative dynamic time warping for online industrial batch-end620

quality estimation, Industrial & Engineering Chemistry Research 51 (2012) 6071–6084.621

[23] S. Gurden, J. Westerhuis, S. Bijlsma, A. Smilde, Modelling of spectroscopy batch process data using grey models to622

incorporate external information, Journal of chemometrics 15 (2001) 101–121.623

[24] T. Kourti, Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups624

and grade transitions, Journal of Chemometrics 17 (2003) 93–109.625

[25] J. Westerhuis, T. Kourti, J. MacGregor, Comparing alternative approaches for multivariate statistical analysis of batch626

process data, Journal of Chemometrics 13 (1999) 397–413.627

[26] P. Nomikos, J. MacGregor, Multivariate spc charts for monitoring batch processes, Technometrics 37 (1995) 41–59.628

[27] S. Wold, N. Kettaneh, H. Friden, A. Holmberg, Modelling and diagnostics of batch processes and analogous kinetic629

experiments, Chemometrics and Intelligent Laboratoy Systems 44 (1998) 331–340.630

[28] J. Chen, K. Liu, On-line batch process monitoring using dynamic pca and dynamic pls models, Chemical Engineering631

Science 57 (2002) 63–75.632

[29] H. Ramaker, E. van Sprang, J. Westerhuis, A. Smilde, Fault detection properties of global, local and time evolving models633

for batch process monitoring, Journal of Process Control 15 (2005) 799–805.634

[30] B. Lennox, G. Montague, H. Hiden, G. Kornfeld, P. Goulding, Process monitoring of an industrial fed-batch fermentation,635

Biotechnology and Bioengineering 74 (2001) 125.636

[31] C. Ündey, S. Ertunç, A. Çinar, Online batch/fed-batch process performance monitoring, quality prediction, and variable-637

contribution analysis for diagnosis, Industrial and Engineering Chemical Research 42 (2003) 4645–4658.638
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